Existence results for a class of Kirchhoff type systems with Caffarelli-Kohn-Nirenberg exponents

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence results for a class of Kirchhoff type systems with Caffarelli-Kohn-Nirenberg exponents

In this article, we are interested in the existence of positive solutions for the following Kirchhoff type system  −M1 (∫ Ω |x| −ap|∇u|p dx ) div(|x|−ap|∇u|p−2∇u) = λ|x|−(a+1)p+c1 (f(v)− 1 uα ) in Ω, −M2 (∫ Ω |x| −bq |∇v|q dx ) div(|x|−bq |∇v|q−2∇v) = λ|x|−(b+1)q+c2 (g(u)− 1 vβ ) in Ω, u = v = 0 on ∂Ω, (1) where Ω is a bounded smooth domain of R with 0 ∈ Ω, 1 < p, q < N , 0 ≤ a, b < N−p p , c...

متن کامل

Positive solutions of singular elliptic systems with multiple parameters and Caffarelli-Kohn-Nirenberg exponents

This paper is concerned with the existence of positive solutions for a class of quasilinear singular elliptic systems with Dirichlet boundary condition. By studying the competition between theCaffarelli–Kohn–Nirenberg exponents, the sign-changing potentials and the nonlinear terms, we establish an interval on the range of multiple parameters over which solutions exist in an appropriate weighted...

متن کامل

Fractional Caffarelli-Kohn-Nirenberg inequalities

We establish a full range of Caffarelli-Kohn-Nirenberg inequalities and their variants for fractional Sobolev spaces.

متن کامل

A Caffarelli-Kohn-Nirenberg type inequality on Riemannian manifolds

We establish a generalization to Riemannian manifolds of the Caffarelli-KohnNirenberg inequality. The applied method is based on the use of conformal Killing vector fields and Enzo Mitidieri’s approach to Hardy inequalities. 2000 AMS Mathematics Classification numbers: 58E35, 26D10

متن کامل

Perturbation Results of Critical Elliptic Equations of Caffarelli-kohn-nirenberg Type

We find for small ε positive solutions to the equation −div (|x| −2a ∇u) − λ |x| 2(1+a) u = 1 + εk(x) u p−1 |x| bp in R N , which branch off from the manifold of minimizers in the class of radial functions of the corresponding Caffarelli-Kohn-Nirenberg type inequality. Moreover, our analysis highlights the symmetry-breaking phenomenon in these inequalities, namely the existence of non-radial mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2016

ISSN: 1844-0835

DOI: 10.1515/auom-2016-0004